7442 社會統計學四版/劉弘煌

14.07.07 勘誤

頁數	行數	原文	修改
401	倒數 第7行	$\Gamma(\frac{n}{2}+1)=$	$\Gamma(\frac{n}{2}+1)=$
480	第1行	我們如果運用前述計算判定係數 /2,來觀察	我們如果運用前述計算判定係數 r^2 ,來觀察 說明:改為 r 平方
481	倒數 第 9 行	計算結果,此 兩個預測變項 (X與 Y) 的迴歸係數 (計算結果,此 兩個預測變項 (X與Z) 的迴歸係數 (說明:兩個預測變項改為 (X 與 Z)

<mark>114.01.14 勘誤</mark>

頁數	行數	原文	修改
327	倒數 第2行	7710 (3 Kill 3 FICE)	<-2.086 所以拒絕 $H_0: \mu_1 = \mu_2$ 的假設;而-2.086< t =1.12<2.086, 所以吾人保留 $H_0: \mu_1 = \mu_3$ 的假設。 說明: 保留 $H_0: \mu_1 = \mu_2$ 的假設。 μ_2 更改為 μ_3
329	第10行	BSD= $t_{\frac{\alpha}{2m},n_{T}-k}\sqrt{MSW(\frac{1}{n_{i}}+\frac{1}{n_{j}})}=3.15\sqrt{2.88(\frac{1}{5}+\frac{1}{5})}=3.38$,i,j=說明:BSD= t (漏了 t ,其餘正確)	1,,5;i≠j

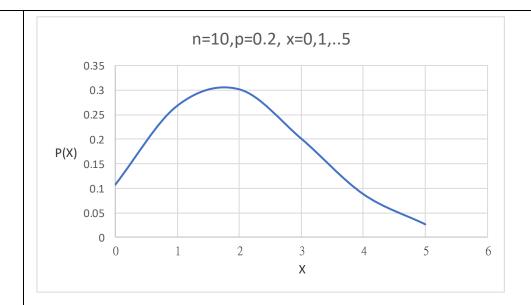
370	第9、 10行	5. $\chi^2 = \frac{(15-13.5)^2}{13.5} + \frac{(10-11.5)^2}{11.5} + \frac{(3-5.4)^2}{5.4}$ $+ \frac{(7-4.6)^2}{4.6} + \frac{(9-8.1)^2}{8.1} + \frac{(6-6.9)^2}{6.9}$ $= 0.1667 + 0.1957 + 1.0667 + 1.2522 + 0.1 + 0.1174$ $= \frac{2.2987}{2.2987}$ (p.370 倒數第 9 行) 6. 因 $\chi^2 = \frac{2.2987}{2.2987} < 5.99$ (根據樣本資料取得的 χ^2 值<查表的 χ^2 值,或 p-value = 0.67 > 0.05),所以保留 H_0 。	5. $\chi^2 = \frac{(15-13.5)^2}{13.5} + \frac{(10-11.5)^2}{11.5} + \frac{(3-5.4)^2}{5.4}$ $+ \frac{(7-4.6)^2}{4.6} + \frac{(9-8.1)^2}{8.1} + \frac{(6-6.9)^2}{6.9}$ $= 0.1667 + 0.1957 + 1.0667 + 1.2522 + 0.1 + 0.1174$ $= 2.8987$ 6. 因 $\chi^2 = 2.8987 < 5.99$ (根據樣本資料取得的 χ^2 值<查表的 χ^2 值,或 p-value = 0.67 > 0.05),所以保留 H_0 。 說明: 2.2987 都更正為 2.8987
386	第4行	假定有一問題,我們計算之 $U=202$, $n_1=20$, $n_2=45$,其 Z 分數的計算如下: $Z = \frac{202 - \frac{(20)(45)}{2}}{\sqrt{\frac{(20)(45)(20 + 45 + 1)}{12}}} = \frac{202 - 450}{\sqrt{450}} = \frac{-248}{70.36} = -3.52$	假定有一問題,我們計算之 $U=202$, $n_1=20$, $n_2=45$,其 Z 分數的計算如下: $Z = \frac{202 - \frac{(20)(45)}{2}}{\sqrt{\frac{(20)(45)(20 + 45 + 1)}{12}}} = \frac{202 - 450}{\sqrt{4950}} = \frac{-248}{70.36} = -3.52$
	第8行	*註:公式 10-7 的另一種形式是: $Z = \frac{U - E(U)}{\sqrt{V(U)}} = \frac{U - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}} , 與一般標準化的公式一樣, Z = \frac{檢定統計量 - 平均數}{標準誤} .$	*註:公式 10-7 的另一種形式是: $Z = \frac{R_1 - E(R_1)}{\sqrt{V(R_1)}} = \frac{R_1 - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}} , \mathbf{其中} R_1 = \sum R_1 , 與一般標 $ 準化的公式一樣, $Z = \frac{檢定統計量 - 平均數}{標準誤}$ 。 說明:第 8 行公式中的 4 處 U 改成 R_1 再加上 $R_1 = \sum R_1$,

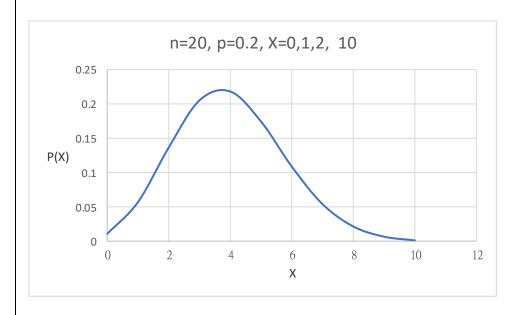
111.05.21 勘誤

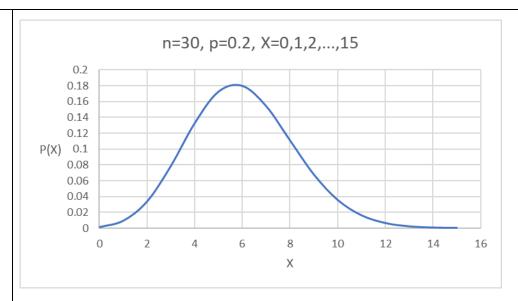
頁數	行數			原文						修改		
404	習題 第8題	8.根據聯合報民 (91.3.25),得到 與客家話的能力 問語言能力是否 (錯誤之處在於 不同世代閩南人 世代/程度 流 20-29 歲 43 30-39 歲 65 40-49 歲 74 50-59 歲 74 60 歲以上 74	所有關本 資料,試 存在差異 第二表完 的河洛語 51 33 25 26	不同世代的閩 以卡方檢定 (α=0.05) 全重複第一表 能力	南人與名歲驗各世	客家人講河洛語	(91.3.25),有	导到下列 能力資 是否存 第二張	刊有關 ⁷ 料,試 在差異 表)	以卡方檢定 <mark>材</mark> ?(<i>α</i> =0.05)	南人與智	充失的情形 客家人講河洛語 代(不同年齡層)

<mark>111.05.12 勘誤</mark>

頁數	行數		D	京文			修改
			個選民,誰	可問他們對年			知道對於政策的態度是否與受訪者的政黨傾向有關,假定下列數調查結果,試根據此數據在顯著水準α=0.05,檢定選民對年金改
404	習題 第 9 題	政黨\態度 國民黨	登成黑网 一 登成 115	不確定 85	不贊成 250	列總和 450	
			210	75	105	390	
		其他	120	70	170	360	
		行總和	445	230	525	1,200	


		(課本)政黨、態度位置相反 更正如上表	
533	第2行	20歲以下年齡層,除65歲以上年齡層外語其他年齡層有差異。	20歲以下年齡層,除60歲以上年齡層外語其他年齡層有差異。
544	上表 下面 第2行	罰則者,增加而增加(36%、 142%、44%),到了	罰則者,增加而增加(36%、 42%、44%),到了

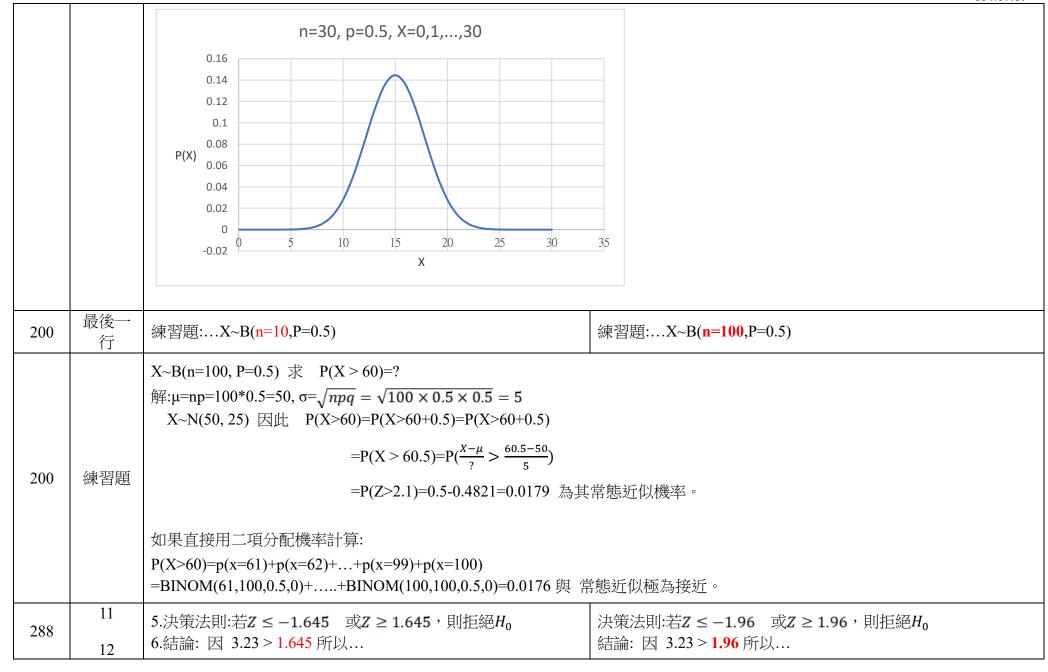

<mark>111.04.08 勘誤</mark>


頁數	行數	原文	修改
185		(第二個圖形下第一行) 透過標準化 $z = \frac{x-75}{10}$, $P(X<60)=-1.5)=$ 0.9332	(第二個圖形下第一行) 透過標準化 $z = \frac{x-75}{10}$, $P(X<60)=-1.5)=$ 0.0668
245	第9行	(3) 用此樣本結果估計此航空公司所有到達桃園國際機場班次 遲到超過 15 分鐘以上的比例。	(3) 用此樣本結果估計此航空公司所有到達桃園國際機場班次 遲到超過 10 分鐘以上的比例。
289	倒數 第 5 行	5. 檢定統計量:Z= $\frac{(\hat{P}_1 - \hat{P}_2) - (P_1 - P_2)}{\sqrt{\hat{P}\hat{O}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$,其中 $\hat{q} = 1 - \hat{p}$ 。	5. 檢定統計量: $Z = \frac{(\hat{P}_1 - \hat{P}_2) - (P_1 - P_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$,其中 $\hat{q} = 1 - \hat{p}$ 。 注意:即根號內 p, q 改為小寫
313	公式 9-1	$F = \frac{S_B^2}{S_W^2} = \frac{\sum_{j=1}^K n_j (\overline{X}_j - \overline{X})^2}{\frac{K-1}{\sum_{j=1}^K (n_j - 1) S_j^2}}$ $n_T - 1$	$F = \frac{S_B^2}{S_W^2} = \frac{\sum_{j=1}^K n_j (\bar{X}_j - \bar{X})^2}{\frac{k-1}{\sum_{j=1}^K (n_j - 1)S_j^2}}$ 注意: 分母部分的 $n_T - 1$ 更正為 $n_T - k$, 分子部分 k 要小寫 (K-1 更正為 k -1)

<mark>111.05.12 勘誤</mark>

頁數	行數			原文			修改
51	倒 7	【公式	3-9)				【公式 3-9】
60	表 3-22	性別 男性 女性 總和	1	度 現代想法 202 33.8% 468 41.4% 670 38.8%	總和 ← 597 100.0% 1130 100.0% 1727 100.0%	各列總數 (該列分 E	
		態度與性	性別錯置 <mark>請更</mark>	正如上表			X 原地不動
104	圖 4-3	\bar{X} $M_{\rm d}$	M_o 與圖形三條	系垂直線未對劑	 三		M_a 與 M_o 往左移到兩條垂直線下
179	圖 6-6	© 10 c	0.4772 99.54% μ-2σ μ 1-6 常態曲線下平均數加減二個	μ+2σ μ*±2σ 標準差間所涵蓋的面積比例	圖形中 99.	.54%	更正為 95.44%
190	1 2 3 4	X=0.25 X=0.75 X=0.95 X=0.975					α =0.25 α =0.75 α =0.95 α =0.975
195	習題 第2題		成功機率 P=0 描述其機率函		數,當試行次 數 上甚麼變化。		令 X 是成功機率 P=0.2 的二項隨機變數,分別以 n=10,20,30 的 試行次數, 觀察其機率函數形狀產生的變化。 (註:以 Excel 散布圖繪製)

註:X=0,1,2, ..., n,本題繪圖時可取 n 的一半為 X 的上限,因二項分配的平均數 μ=np,平均數通常為分配的最高點,本題 n=10,20,30, μ=10?0.2=2, μ=20?0.2=4, μ=30?0.2=6,2,4,6 分別是三個分配的最高點,圖形如果是對稱的,其長度應是一倍 4,8,12,根據經驗取試行次數的一半,當 X 的上限最佳,也就是 n=10,20,30 的一半 5,10,15 作為 X 的上限繪圖,亦即 n=10,


X=0,1,2,...,5; n=20, X=0,1,2,...,10; n=30, X=0,1,2,...,15 繪圖,圖形會最漂亮。X 是橫坐標, $P(X)=\binom{n}{x}P^x(1-p)^{n-x}$ 為縱座

標。其中 $\binom{n}{x} = \frac{n!}{x!(n-x)!}$,是組合數,可利用 Excel 內建統計函數 COMBIN(n,x)算出。指令參考 =COMBIN(A2,B2)*C2^B2*(1-

$C2)^{A}(A2-B2)$

本題是二項分配當 n 增加時會趨近常態分配的展示,讀者可改變 P,去觀察二項分配趨近常態分配的現象。下圖即為 n=30,p=0.5 的繪圖,供習者參考。

將會發現 P 越接近 0.5 趨近常態的速度會越快。

	1						114.07.07
		更正:	<u> </u>				
		秘書 前測	$II(X_1)$	後測(X ₂)	差異(X ₂ -X ₁)	差異平方	
		1	35	50	15	400	
		2	41	54	13	289	
		3	45	60	15	225	
293	例 19	4	32	46	14	256	
273	N 1 12	5	54	65	9 (11)	81 (121)	
		6	50	60	10	100	
		7	30	42	12	324	
		8	39	52	13	289	4
					$\sum d_i = \frac{101}{}$	$\sum d_i^2 = \frac{1309}{}$	
					103	1349	
		已低於1	15字」 value=P(的說法。 (t≤-2.909)=(5. 決策法則: 以檢定的結果 <mark>不能</mark> 拒絕	5(左尾檢定) =8, df =7 = $\frac{12.875 - (15)}{2.0659} = \frac{-2.1}{0.73}$ 若 $t \le -t_{0.01,7} = -2.998$ H_0 ,即樣本資料尚未	
362	倒數 第 5 行		度的處理		資料分配得太厲害(非常	第 適用等距尺 態)	度的處理原則,或資料分配偏得太厲害(非常
435	最下方 統計表	更正: 項目 X	Y	D	-16 更正為 1	6	

114.07.07

1	5	1	4	16
2	4	2	2	4
3	3	3	0	0
4	2	4	-2	4
5	1	5	-4	16
				ā
				$\Sigma D^2=40$