
Limited Dependent Variable  

in Panel Data  

with Stata 



Generalized Linear Model 
• Nelder and McCullagh (1972) describe a class of Generalized 

Linear Models (GLMs) that extends linear regression to permit 
non-normal stochastic and non-linear systematic components. 

• GLMs encompass a broad and empirically useful range of 
specifications that includes linear regression, logistic and 
probit analysis, and Poisson models. 

• GLMs offer a common framework in which we may place all of 
these specification, facilitating development of broadly 
applicable tools for estimation and inference.  

• In addition, the GLM framework encourages the relaxation of 
distributional assumptions associated with these models, 
motivating development of robust quasi-maximum likelihood 
(QML) estimators and robust covariance estimators for use in 
these settings. 



GLM Structure 

Yi = 0 + 1Xi + ei  

=i + ei  
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Estimation of Discrete Panel Data 
 

1. Binary outcome:  

probit 

logit 

2. Count outcome: 

      poisson 

      negative binominal  



Parameter Estimation,  
given incidental parameter problem 

Estimation by conditional likelihood: Searching a minimal sufficient statistic. 

Chamberlain (1980) indicates that, summation of yit is a minimal sufficient statistic 

for the individual effects.  Therefore, maximizing the conditional likelihood 

function below yields the conditional logit estimate estimates for .   
 

 

 

 

 

And, by definition of sufficient statistic, the distribution of the 

data given this sufficient statistic will not dependent upon 

individual effects i. 

 

That is, by conditioning on the summation of yit, we swept away 

individual effects i  
 
Chamberlain G. (1980) Analysis of covariance with qualitative data.  Review of Economic Studies, 47, 225-238 
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Case 1. Female union membership 



Union=F(age, grade, i.not_smsa) 



限定係數為1的解釋變數 

south  year  south*year 

Estimation 
Panel probit  by random effect 



rho is the proportion of the total variance contributed by the panel-level variance 

component.  When rho is zero, the panel-level variance component is unimportant, 

and the panel estimator is not different from the pooled estimator.  

 

A likelihood-ratio test of rho=0 is shown at the bottom of the output. This test formally 

compares the pooled estimator (probit) with the panel estimator. 
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Estimation 
Panel probit  by equal-correlation, population -averaged 



Robust Covariance 



The random-effects model is calculated using quadrature, which is an 

approximation whose accuracy depends partially on the number of 

integration points used. We can use the quadchk command to see 

if changing the number of integration points affects the results. If the 

results change, the quadrature approximation is not accurate given the 

number of integration points.  

 

Try increasing the number of 

integration points using the intpoints() option and run quadchk again.  

 

Do not attempt to interpret the results of estimates when the coefficients 

reported by quadchk differ substantially. 

Quadrature Stability 



Post-estimation test 



To test whether residing in the south affects union status, we must determine 

whether 1.south and south#c.year are jointly significant. 



Post-estimation Tests 
 



1. Hausman Test for random effect 
 

H0: E(uit|Xit)=0 

• The null hypothesis implies that: 
 
        The random effects model is better 

• If the null if rejected, then the fixed effects 
model is a better specification. 



• Under H0,  

– The difference of the estimates of two models are 
negligibly small.  

– Both LSDV and GLS are consistent, but LSDV are 
not efficient.    Hence, the random models is the 
better choice.  

• If we reject H0, only LSDV is consistent, but not 
for GLS, fixed models is more applicable. 
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Hausman test in action 

1. 從選單選擇logit，估計模型選 random 
effect。 

2. 將估計結果存取，命名為re。 
存取方法如次頁 





3. 重複上面步驟1，估計模型選 fixed-effect。 

4. 將估計結果存取，命名為fe。 

5. 執行 Hausman test. 







2. Computing Marginal Effects 
In this example, we fit a population-averaged model of union status on the 

woman’s age and level of schooling, whether she lived in an urban area, whether 

she lived in the south, and the year observed. Here we compute the average 

marginal effects from that fitted model on the probability of being in a union. 





Count Model in Panel Data 



Count panel data 

Ships.dta is data on the number of ship accidents for five different types of ships 

(McCullagh and Nelder 1989, 205). We wish to analyze whether the “incident” rate is 

affected by the period in which the ship was constructed and operated. Our measure 

of exposure is months of service for the ship, and in this model, we assume that the 

exponentiated random effects are distributed as gamma with mean one and variance 

alpha.  

N=ship 



Statistics→ longitudinal/panel data  
→ count outcomes → Poisson regression 



irr reports exponentiated coefficients eb rather than 

coefficients b.  

For the Poisson model, exponentiated coefficients are 

interpreted as incidence-rate ratios. 



The output also includes a likelihood-ratio test of  = 0, which 

compares the panel estimator with the pooled (Poisson) estimator. 



Prediction. Case 1 
we fit a random-effects model of the number of accidents experienced by five 

different types of ships on the basis of when the ships were constructed and 

operated.  Here we obtain the predicted number of accidents for each 

observation, assuming that the random effect for each panel is zero 



From these results, you may be tempted to conclude that some types of ships 

are safe, with a predicted number of accidents close to zero, whereas others are 

dangerous, because 1 observation is predicted to have more than 83 accidents. 



Prediction. Case 2 
 

However, when we fit the model, we specified the exposure(service) option. The variable 

service records the total number of months of operation for each type of ship constructed 

in and operated during particular years.  

Because ships experienced different utilization rates and thus were exposed to different 

levels of accident risk, we included service as our exposure variable. When comparing 

different types of ships, we must therefore predict the number of accidents, assuming that 

all ships faced the same exposure to risk.  For this purpose, we do the following:  



These results show that if each ship were used for 1 month, the expected number 

of accidents is 0.002975. Depending on the type of ship and years of construction 

and operation, the incidence rate of accidents ranges from 0.00137 to 0.00474. 



Negative binomial distribution 
if y is over-dispersed or rare event data 

You have (fictional) data on injury “incidents” incurred among 20 airlines 

in each of 4 years.  

(Incidents range from major injuries to exceedingly minor ones.) The 

government agency in charge of regulating airlines has run an 

experimental safety training program, and, in each of the years, some 

airlines have participated and some have not. You now wish to analyze 

whether the “incident” rate is affected by the program. You choose to 

estimate using random-effects negative binomial regression, as the 

dispersion might vary across the airlines for unidentified airline-specific 

reasons. Your measure of exposure is passenger miles for each airline in 

each year. 

 

airacc.dta 



airacc.dta 



Statistics→ longitudinal/panel data  

→ count → negative binominal  regression 



logit 



Poisson 



negative binominal 


